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Abstract. We review the physical content of the two simplest models of reggeon field theory: namely the
eikonal and the Schwimmer models. The AGK cutting rules are used to obtain the inclusive, the inelastic
and the diffractive cross sections. The system of non-linear equations for these cross sections is written
down and analytic expressions for its solution are obtained. We derive the rapidity gap dependence of
the differential cross sections for diffractive dissociation in the Schwimmer model and in its eikonalized
extension. The results are interpreted from the partonic viewpoint of the interaction at high energies.

1 Introduction

Regge theory is widely used to describe the low pT high-
energy interactions of hadrons, nuclei and (real and vir-
tual) photons. The theory takes into account both Regge
poles and cuts. The latter are related to the exchange
of several reggeons in the t-channel. The status of this
theory within QCD is reviewed, for example, in [1]. The
Pomeranchuk singularities (that is, the pomeron pole and
the corresponding cuts) play a special role in this theory
as they determine the high-energy behavior of diffractive
processes and multiparticle production [1]. It is important
to understand the connection between the general results
of reggeon theory and the space-time picture of hadronic
interactions. This becomes possible due to the relation be-
tween Regge theory and the parton model [2,3]. Multiple
pomeron exchanges are especially important if the inter-
cept of the pomeron, αP (0), is larger than unity, that is,
∆ ≡ αP (0) − 1 > 0. This so-called “supercritical” theory
is favoured both by experimental data and by calculations
in QCD perturbation theory [4]. In this case the partonic
interpretation becomes very non-trivial. The relation be-
tween the probabilistic partonic picture of the interaction
and diagrams of reggeon theory has been studied in [5,6].

In this paper we discuss two simple analytic models
of Regge theory, which provide particular examples of the
partonic picture of high-energy hadronic collisions. These
are the eikonal model and the Schwimmer model [7]1,
which are often used in phenomenological applications of
Regge theory. We use the AGK cutting rules [9] to ob-
tain the inelastic, diffractive and inclusive cross sections

a e-mail: V.A.Khoze@durham.ac.uk
1 The currently popular Balitski–Kovchegov equation [8] is,

from the partonic and space-time viewpoints, a generalization
of the Schwimmer model.

predicted by these models, and we discuss the partonic in-
terpretation of these results. Although some of these are
known, it is informative to summarize them here. For the
Schwimmer model and its eikonal generalization, we ob-
tain explicit formulae for the total, inelastic and diffrac-
tive cross sections. We also obtain the dependence of the
differential cross section on the size of the rapidity gap.

Our ultimate goal is to use these results to improve the
“global” analysis of data for “soft” high-energy processes;
see, for example, [10].

2 Multiparticle content of reggeon diagrams

An interpretation of reggeon diagrams in terms of their
inner multiparticle structure was given in [11]. It corre-
sponds to the qualitative picture [2,3] that a fast hadron
of momentum p (of rapidity y � ln 2p/m) interacts with a
target due to quantum-mechanical fluctuations containing
slow particles. The structure of the fluctuations is rather
specific and is usually called “multiperipheral”. Such a
fluctuation contains ∼ ln p soft virtual particles ordered
in their rapidities. For brevity we shall call these particles
soft partons, or simply partons2. Only the slowest partons3
have a chance to interact directly with a target. The faster
partons of the fluctuation simply play the role of specta-
tors. The cross section of the interaction is proportional

2 Here we do not associate (soft) partons with definite ob-
jects like quarks, gluons, or pions, because only rather general
features of them [2,3] are relevant for our analysis. Hard par-
tons of different spatial scales are considered in connection with
deep inelastic scattering and other hard processes.

3 These partons have momenta of the order of the typical
hadronic scale µ of about several hundred MeV.



524 K.G. Boreskov et al.: The partonic interpretation of reggeon theory models

to the number n(y) of slow partons. In this scheme, slow
partons originate from faster partons close in rapidity and
n(y) has the exponential behavior ∼ exp(∆y). The inter-
action of a single slow parton corresponds to Regge-pole
behavior of cross section with ∆ = αP (0)−1, while the in-
teractions of two or more partons with the target give rise
to Regge-cut type contributions. If the (multiperipheral)
evolution of a fast parton into slow ones is independent of
the evolution of the other fast partons, then we obtain in-
dependent slow partons whose interactions correspond to
“non-enhanced” reggeon diagrams of the eikonal approx-
imation (see Sect. 3).

For the supercritical pomeron, i.e. one described by a
Regge pole with ∆ > 0, the number of slow partons in-
creases exponentially with the initial rapidity y, i.e. in the
course of the evolution of the parton fluctuation in rapid-
ity space the number of partons multiplies, for example,
by a splitting mechanism. As a consequence another type
of reggeon diagrams will appear – that is, “enhanced” di-
agrams of the Schwimmer type occur (see Sect. 4). We
emphasize that for the parton dynamics to be consistent
we require not only splitting, but also fusion of partons –
though in special cases, we may, to a good approximation,
neglect the latter process.

The Abramovsky–Gribov–Kancheli (AGK) cutting
rules [9] are a powerful tool for the investigation of the
multiparticle structure of complicated reggeon diagrams.
They were derived as the high-energy version of Cutkosky
cutting rules [12]. They give the discontinuity of the whole
reggeon diagram in terms of the discontinuities of its
component subdiagrams. Each reggeon diagram has vari-
ous discontinuities which correspond to different ways of
cutting the diagram and to different intermediate states.
For example, cutting the Regge-pole diagram corresponds
to the simple multiperipheral intermediate state. On the
other hand, cutting a double-pomeron-exchange diagram
leads to intermediate states of both double and single den-
sity, depending on the number of cut pomerons, and also
to the state with a large rapidity gap obtained when the
diagram is cut between pomerons. The AGK rules give
relations between the contributions of given reggeon dia-
grams to different multiparticle cross sections. Examples
of such relations will be discussed below.

The space-time picture of the interaction is another
valuable tool in the description of high-energy collisions.
pomeron exchange is a highly non-local process. It is char-
acterised by longitudinal and time scales which are pro-
portional to the initial energy. As a consequence, only
reggeon diagrams with a so-called non-planar structure
contribute at high energies. Partonic fluctuations for these
diagrams develop simultaneously at comparable longitudi-
nal distances. In contrast, fluctuations corresponding to
planar diagrams develop succesively and will only con-
tribute for a very extended target. However, particular dis-
continuities of planar graphs (which vanish when summed)
can be asymptotically essential, and must therefore be
taken into account in the analyses of cross sections of par-
ticular processes. For instance, the elastic cross section is
evidently determined by cutting a planar diagram.

Gribov [3] managed to present the total cross section
in a very simple way through dispersion integrals of the
“particle–particle → n pomeron” amplitudes. He did this
by rearranging the contributions of both non-planar and
planar multireggeon diagrams using the reggeon unitarity
condition. Keeping only the one-particle pole contribu-
tions to these amplitudes (Fig. 1a) we reproduce the for-
mula of the well-known “eikonal approximation” for high-
energy scattering. However we should keep in mind that
the space-time picture behind this formula does not cor-
respond to successive elastic rescatterings. The genuine
space-time picture has been lost under rearrangement of
diagrams with different planarities.

3 The eikonal model

3.1 The eikonal χP

The single pomeron-exchange amplitude has the form4

MP (s, t) =
(

s

s0

)αP (t)−1

ηP (αP (t)) g1(t)g2(t), (1)

where g1,2(t) are the couplings of the pomeron to the col-
liding hadrons, and

ηP (αP (t)) = −1 + exp(−iπαP (t))
sin παP (t)

(2)

is the signature factor, which for αP (0) = 1 is equal to i.
Here we shall neglect the real part of the pomeron ampli-
tude, assuming that the value of ∆ = 1 − αP (0) is small.

It is convenient to analyze high-energy interactions
in terms of the impact parameter, b, by introducing the
Fourier transformed amplitude5

f(s, b) =
1

(2π)2

∫
d2k eib·k M(s,k2), (3)

where t = −k2. For an exponential parametrization of
residues, gi(t) = gi exp(−R2

i k
2), i = 1, 2, and a lin-

ear parametrization of the pomeron trajectory, αP (t) =
αP (0) + α′

P t, we obtain the familiar Regge-pole approxi-
mation of the amplitude in impact parameter space:

fP (Y, b) � i g1g2

exp
(
− b2

4λ

)
4πλ

exp(∆Y ) = i
χP (Y, b)

2
,

Y � ln(s/s0), s0 � 1 GeV2,

λ = R2
1 + R2

2 + α′
P Y. (4)

Note that the amplitude fP (Y, b) increases as exp(∆Y ),
and so violates unitarity as s → ∞. (Recall that |f(Y, b)| ≤
2 due to unitarity.) If we include multi-pomeron ex-
changes, then this inconsistency is avoided.

4 The normalization of amplitude is σtot(s) = 2ImM(s, 0).
5 The normalization used for M(s, t) corresponds to σtot =

2
∫

d2b Imf(s, b) and σel =
∫

d2b |f(s, b)|2.
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Fig. 1. a The diagrams of the eikonal model in Regge theory; in which the 2-particle → n-pomeron amplitude of diagram b is
represented by diagram c. A cross on a line means that in the expression for the discontinuity of the amplitude of diagram (a)
the propagator 1/(q2 − m2) is replaced by 2πiδ(q2 − m2)

3.2 Cross section formulae in terms of the eikonal χP

The eikonal approximation is the simplest way to restore
s-channel unitarity for elastic amplitudes. Summation of
the eikonal diagrams gives the following well-known ex-
pressions in impact parameter space,

f(Y, b) = i
(

1 − exp
(

−χP (Y, b)
2

))
, (5)

σtot(Y ) = 2
∫

d2b

(
1 − exp

(
−χP (Y, b)

2

))
, (6)

where, we recall, Y � ln(s/s0).
At very high energies, Imf(Y, b) → 1 (the black disc

limit) in the region of b where χP (Y, b) is large. From (4)
we see that χP becomes small only in the region b2 >
4 ∆α′Y 2. Thus, for very large s, the radius of interaction
increases as R2(s) = 4 ∆α′ ln2(s/s0), and the total cross
section increases as σtot ≈ 2πR2(s).

To obtain the inelastic cross section we must consider,
according to the AGK cutting rules, all eikonal type di-
agrams in which at least one pomeron is cut. Then for
each cut pomeron we have a factor χP , and for each un-
cut pomeron a factor (−χP ), which takes into account the
position of the uncut pomerons both on the left and on
the right of the cutting plane (that is ifP − if∗

P = −χP ).
If no pomerons are cut, then it is necessary to subtract
the extra terms where all pomerons formally are on the
same side of the cutting plane. This rule is valid both in
the momentum and in the coordinate representation [13].

For instance, for the two-pomeron-exchange diagram,
the discontinuities for zero, one and two cut pomerons
give, respectively,

σ
(2)
0 (b) =

1
2!

[
(−χP )2 − 2(−χP /2)2

]
=

1
4
χ2

P ,

σ
(2)
1 (b) =

1
2!

2χP (−χP ) = −χ2
P ,

σ
(2)
2 (b) =

χ2
P

2!
, (7)

which reproduces the known AGK ratios 1 : −4 : 2 [9].
It is easy to check that these contributions sum to the
second term, 2 Imf (2)(b), in the power series expansion of
the eikonal formula (5).

In this model, the distribution in terms of the number
k of cut pomerons at fixed b has the Poissonian form

σk(Y, b) =
(χP (Y, b))k

k!
exp(−χP (Y, b)), (8)

σ0(Y, b) = 1 + exp(−χP (Y, b)) − 2 exp
(

−χP (Y, b)
2

)
,

(9)

which leads to the following expressions for the inelastic
and diffractive cross sections:

σinel(Y ) =
∫

d2b (1 − exp(−χP (Y, b))) , (10)

σ0(Y ) =
∫

d2b

(
1 − exp

(
−χP (Y, b)

2

))2

. (11)

In the eikonal model of Fig. 1 only elastic intermediate
states appear in the rescattering diagrams6. Hence it is
natural that σ0 = σel.

The AGK cancellation theorem [9] enables the inclu-
sive cross sections to be calculated. For example, consider
the single particle inclusive process 12 → aX. In this case,
at least one pomeron is cut. The others may be either cut
(giving a contribution χP ) or uncut (giving a contribution
−χP ). Thus the multiple-pomeron-exchange contributions
cancel, and the single-inclusive cross section is described
by the diagram shown in Fig. 2. As a function of the par-
ticle rapidity it is given by

dσa

dy
= λag1(0)g2(0)e∆ye∆(Y −y)

= λag1(0)g2(0)e∆Y , (12)

where λa is related to the rapidity density of hadron a in
events originating from single-pomeron exchange.

6 For the interaction with a nucleus, the AGK rules can be
applied in a more general situation in which every pomeron
exchange is substituted by the hadron–nucleon amplitude
fhN (Y, b), i.e. by the whole set of multi-pomeron exchanges.
The amplitudes fhN (Y, b) have both inelastic and elastic dis-
continuities. As a result, (6) will contain σtot

hN (Y, b)/2 instead
of χP /2, (10) will contain σinel

hN (Y, b) and (11) will include both
the elastic and diffractive dissociation cross sections [13].
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Fig. 2. The Kancheli–Mueller diagram [14,15] describing the
single particle inclusive process 12 → aX in the eikonal model.
y is the rapidity of particle a, and Y is the rapidity interval
between the colliding hadrons

Note that the impact parameter b is conserved during
the eikonal rescattering. As a consequence, all the formu-
lae are valid, not only for integrated cross sections, but
at any fixed b. In particular, the same increase with en-
ergy, (s/s0)∆, occurs at fixed b for the density of particles
(dσa/dy)/σinel in the limit s → ∞.

3.3 Partonic interpretation of the eikonal model

The formulae of the eikonal approximation can be inter-
preted in terms of the interactions of fast partons in col-
liding hadrons. If the distribution in the number of fast
partons in a hadron has a Poisson form, and if the cross
section of a parton–parton interaction is denoted by σ̂,
then the summation of the diagrams7 shown in Fig. 3 leads
to the eikonal results of (5) and (10) with

χP (Y, b) (13)

=
∫

d2b1d2b2 ρ
(0)
1 (b1) σ̂(Y,b − b1 + b2) ρ

(0)
2 (b2),

where ρ
(0)
i (bi) is the fast parton distribution8 in impact

parameter space of colliding hadron i, with i = 1, 2. That
is the contribution of single-pomeron exchange is repre-
sented by the single particle densities ρ

(0)
i and the cross

Fig. 3. The Feynman diagrams for the interaction of partonic
fluctuations of colliding hadrons

7 Note that in these diagrams a parton of hadron 1 in-
teracts with only one parton of hadron 2. It resembles the
Czyź–Maximon approximation [16] for nucleus–nucleus colli-
sions, when only single nucleon–nucleon interactions are taken
into account.

8 The distributions are normalized so that
∫

d2bi ρ
(0)
i (bi) =

〈ni〉, where 〈ni〉 is the mean number of fast partons in the
hadron i.

section σ̂(Y ) of the parton–parton interaction. Similarly,
the n-pomeron-exchange contribution equals the proba-
bility of finding n partons in each of the colliding hadrons
(which, for independently distributed partons, are sim-
ply (ρ(0)

i )n with i = 1, 2) multiplied by a sign-alternating
factor (−1)n+1(σ̂/2)n/n!. The alternating sign is due to
parton screening.

Note that (13) is written assuming that the partons are
all the same. In the more realistic situation, with quarks
and gluons as partons, the formalism may be more com-
plicated to allow for different parton–parton amplitudes.
It results in a straightforward generalization of the simple
eikonal model; see, for example [17].

One of the drawbacks of this simple model is the lack of
energy-momentum conservation [18]. Indeed a very large
number of interactions ≈ χP (Y ) become important as
Y → ∞, and it is necessary to allow for energy-momentum
conservation in the distributions of momenta in the par-
tonic systems. This will lead to deviations from Poisson
distributions. These deviations are usually taken into ac-
count in realistic models of high-energy interactions [1,
18].

However, the interpretation is not self-consistent in the
case of the supercritical pomeron (∆ > 0). We see that in
this case the origin of the increase of the amplitude f̂(Y )
with energy is not explained in terms of partons. It is de-
sirable to reformulate this approach without reference to
pomeron exchange in parton–parton interaction. As we
discussed in Sect. 2, the increase of the pomeron-exchange
amplitude can be explained as the increase in the number
of slow partons. It is possible to rewrite (13) in such a
form that it will correspond to the interaction of two par-
tonic showers viewed from the Lorentz frame at arbitrary
rapidity y1:

χP (Y, b) =
∫

d2b1d2b2 (14)

× ρ1(y1,b1) σ̂0(b − b1 + b2) ρ2(Y − y1,b2),

where the slow parton densities ρi have a Regge form:

ρi(y, b) =
gi

4πα′y
exp

(
− b2

4α′y

)
exp(∆y), (15)

and the parton–parton interaction cross section σ̂0 is local
in rapidity space. It is easy to see that (14) does not de-
pend on the choice of Lorentz frame, i.e. on the point y1,
due to the particular form of the reggeon densities (15).

Since only the products of quantities occur, we have
been able to move the energy dependence (that is the s
or Y dependence) from the parton–parton reaction cross
section σ̂(Y ) to the incoming parton distributions ρi in
(14). Thus the whole Y dependence now occurs in the
parton densities, while the function σ̂0 describes the in-
teractions of two partons with the same rapidity. In other
words, in the alternative form (14) there is no reference
to pomeron exchange, and all the Regge behavior occurs
in the densities – the increase of the densities as a func-
tion of y is natural because of the cascade development
of the two partonic systems. The average number of slow
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partons, 〈ni(y)〉 =
∫

d2bi ρi(y, bi), is the product of the
average number of fast partons, i.e. of partonic cascades,
and the average number of slow partons in the cascade,
m(y) ∼ exp(∆y). However taking a Poisson distribution
for the partons at each rapidity is a strong assumption of
the eikonal model.

Thus, in the framework of the parton model, we have
either a Regge form of σ̂(Y ) in (13), or the Regge in-
crease of the partonic densities ρi(y) in (14). In (14), σ̂0
describes a local parton–parton interaction as a function
of both rapidity and impact parameter, which avoids the
highly non-local pomeron interaction which occurs in (13).
Energy-momentum conservation in the partonic interpre-
tation can be imposed by the requirement of the energy-
momentum sum rule for the parton distributions ρi.

3.4 Probabilistic interpretation
of the inelastic cross section

In the eikonal model there is a clear probabilistic inter-
pretation of the inelastic cross section [19]. The single in-
elastic cross section at fixed b, χP (Y, b), corresponds to
the product of the average numbers of partonic cascades
at fixed b1,2 and of the probability for soft partons to in-
teract. Similarly, the interaction of k soft partons from
different parton chains is determined by (8):

σinel
k (Y, b) =

(χP (Y, b))k

k!
exp(−χP (Y, b)),

where the exponential factor exp(−χP ) corresponds to the
requirement that all other partons do not interact. The
total inelastic cross section at fixed b is, therefore,

σinel(Y, b) =
∞∑

k=1

σinel
k (Y, b) = 1 − exp(−χP (s, b))

=
∞∑

m=1

(−1)m−1χm
P (s, b)

m!
.

We can readily see the origin of the last, sign-alternating,
expression for the inelastic cross section. It is just a math-
ematical formula for the probability of joint (not mutually
excluded) events:

Prob(A1 ∪ A2 ∪ · · · ∪ An)

=
∑

i

Prob(Ai) −
∑
i<j

Prob(Ai ∩ Aj)

+
∑

i<j<k

Prob(Ai ∩ Aj ∩ Ak) − . . . (16)

An inelastic event corresponds to the interaction of at least
one slow parton with the target (an event Ai). Then it is
necessary to subtract from the formula for σinel

1 (Y, b) the
probability of the interactions of two slow partons, and to
add the one for triple interaction, and so on.

It follows from the Poisson distribution (8) that the av-
erage number, 〈k〉, of cut pomerons is equal to χP (Y, b).

Fig. 4. a Parton interpretation of the eikonal approximation
for a supercritical pomeron; b parton interpretation of the
Schwimmer approximation (single cascade) and of the eikon-
alized Schwimmer approximation (several cascades)

It, thus, increases like exp(∆Y ). Thus, the increase of the
produced particle densities, (12), in this model is related
to the very large number of partons in the hadronic fluctu-
ations. For the partonic interpretation (14) with partonic
cascading, the exponential increase of the particle densi-
ties is clearly consistent with the inclusive particle formula
(12).

Thus, to interpret the case of ∆ > 0, we have either to
introduce the energy dependence of the fast parton inter-
actions (which is not self-consistent), or to include a mech-
anism for splitting the partons in the course of the evo-
lution in y. In the latter case the number of slow partons
increases as exp(∆Y ), and if only one of the slow partons
interacts with the target, then the exchange of the super-
critical pomeron is reproduced. The eikonal approxima-
tion will arise if several partons interact, but no more than
one parton of each independent (splitting) fluctuation (see
Fig. 4). The more consistent approach, in which we allow
any parton resulting from the fluctuation to participate in
the interaction, leads [6] to the Schwimmer model and its
eikonalized version.

4 The Schwimmer model

Schwimmer [7] proposed a simple model of reggeon field
theory based on the triple-pomeron interaction only. It
sums up the set of fan diagrams of the type shown in
Fig. 5.

It is evident that the Schwimmer model is not sym-
metric with respect to the incoming hadrons, 1 and 2. It
was originally formulated for the interaction of hadrons
with nuclei. It is expected to be a reasonable approxima-
tion when hadron 1 (or a virtual photon) has a size much
smaller than hadron 2 (nucleus), that is g1 � g2, and the

Fig. 5. Two typical fan diagrams originating from the triple-
pomeron coupling, which correct the original pomeron ex-
change
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Fig. 6. Diagrammatic form of (17), where here ϕ denotes
ϕtot/2. For clarity the diagram has not shown the truncation
of particle 2

triple-pomeron coupling r is also small. In the case of the
interaction with a nucleus we may also neglect the depen-
dence on the impact parameter, b, at energies when the
interaction radius is much smaller than the nuclear size.
Here we adopt this situation as a toy model9, so that the
amplitudes depend only on the rapidity Y .

4.1 Total cross section in the Schwimmer model

Following the Schwimmer model, we choose the n-
pomeron–particle 2 amplitude to have an eikonal form,
with Gn = gn

2 . Rather than using the amplitude of (5), it
is convenient to work in terms of the “truncated” am-
plitude ϕtot(Y ) = σtot(Y )/(g1g2) = 2Imf(Y )/(g1g2),
and to introduce a new pomeron “propagator” P (Y ) =
χP /(2g1g2) = exp(∆Y ). By construction, the function
ϕtot(Y ) satisfies the following non-linear integral equa-
tion10

ϕtot(Y )/2 = e∆Y (17)

−rg2

∫ Y

0
dy1e∆(Y −y1) (ϕtot(y1)/2)2;

see Fig. 6. The differential form of the equation is

dϕtot(Y )
dY

= ∆ϕtot − rg2

2
ϕ2

tot. (18)

To solve the equation it is convenient to make the substi-
tution

ϕtot(Y ) = 2τ utot(τ), τ = e∆Y , (19)

so that (18) becomes

dutot(τ)
dτ

= − ε u2
tot, utot(1) = 1, with ε =

rg2

∆
.(20)

The solution

utot =
1

1 + ε (τ − 1)
(21)

gives the well-known expression for ϕtot(Y )

ϕtot(Y ) =
2P (Y )

1 + ε [P (Y ) − P (0)]
. (22)

9 The introduction of the b dependence is straightforward,
but in this case there is no analytic solution.
10 Note that (17) is written for ϕtot(Y )/2, since the amplitude
f(Y ) = ig1g2ϕ(Y )tot/2.

Note that the integration in (17) goes from y = 0 to Y . If,
however, the integration starts from ymin, then for the cor-
responding solution ϕtot(Y ; ymin) we should replace P (0)
in (22) by P (ymin). From (22), we see that the cross sec-
tion g1g2ϕtot(Y ) at first increases as exp(∆Y ), and then
tends to the finite limit 2g1∆/r for very large Y .

4.2 Inelastic and diffractive cross sections

To obtain the inelastic and diffractive amplitudes we use
the AGK cutting rules just as we did in Sect. 3. We sub-
stitute for the cut amplitude the corresponding cross sec-
tion σinel or σD, and for the uncut amplitude the factor
(−σtot). This results in integral equations similar to (17),
but with a non-diagonal structure for the inelastic cross
section:

ϕinel(Y ) ≡ σinel

g1g2

= 2e∆Y − 2r g2

∫ Y

0
dy1e∆(Y −y1)ϕinel(y1)ϕtot(y1)

+ r g2

∫ Y

0
dy1 e∆(Y −y1)ϕ2

inel(y1)

+ 2r g2

∫ Y

0
dy1 e∆(Y −y1)ϕinel(y1)ϕD(y1), (23)

while for the diffractive cross section, corresponding to the
production of a state accompanied by a rapidity gap,

ϕD(Y ) ≡ σD

g1g2

=
r g2

2

∫ Y

0
dy1 e∆(Y −y1)ϕ2

tot(y1)

− 2r g2

∫ Y

0
dy1e∆(Y −y1)ϕD(y1)ϕtot(y1)

+ r g2

∫ Y

0
dy1 e∆(Y −y1)ϕ2

D(y1). (24)

Note that coefficients in (24), which result from the differ-
ent cuttings, are in the same ratios, (1 : −4 : 2), as in (7).
Similar equations have been obtained in [20] in the frame-
work of the Balitsky–Kovchegov equation.

Taking into account that ϕinel + ϕD = ϕtot, we obtain
from (23) the differential equation for the inelastic cross
section,

duinel(τ)
dτ

= −2ε u2
inel, uinel(1) = 1, (25)

where, similar to (19), we use the substitutions

ϕinel(Y ) = 2τ uinel(τ), ϕD(Y ) = 2τ uD(τ).

It is remarkable that the equation for uinel, i.e. for σinel, is
diagonal. It is a generalization of the similar result for the
non-enhanced diagrams (see the footnote in Sect. 3.2).
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Fig. 7. Diagrammatic form of (29), where ϕ denotes ϕtot. For
clarity the diagram does not show the truncation of particle
2. Recall that the extra factor of 1/2 in (29) in the ratios
(1 : −4 : 2) is because the amplitude f(Y ) ∝ ϕ/2

Thus, in analogy to (22), we obtain the solutions

uinel(τ) =
1

1 + 2ε (τ − 1)
, (26)

uD(τ) ≡ utot(τ) − uinel(τ)

=
1

1 + ε (τ − 1)
− 1

1 + 2ε (τ − 1)
. (27)

Note that in the limit ετ � 1, these solutions reproduce
the first reggeon graphs, and that in the saturation regime
(where ετ  1) we have ϕinel = ϕD = ϕtot/2 = 1/ε.

Next, we obtain the dependence of diffractive produc-
tion on the rapidity gap y, or on the mass of the produced
system, where ln(M2/M2

0 ) = Y − y. We introduce a func-
tion ϕgap(Y ; ymin) corresponding to the cross section for
the production of the final state with a rapidity gap larger
than ymin:

ϕgap(Y ; ymin) =
1

g1g2

∫ Y

ymin

dy1
dσD

dy1
,

ϕgap(Y ; 0) = ϕD.

(28)

This cross section satisfies the same integral equations as
the diffractive dissociation cross section ϕD, except that
the integration over rapidity starts from ymin instead of 0.
That is,

ϕgap(Y ; ymin) =
rg2

2

∫ Y

ymin

e∆(Y −y1)ϕ2
tot(y1)

−2rg2

∫ Y

ymin

dy1e∆(Y −y1)ϕgap(y1; ymin)ϕtot(y1)

+rg2

∫ Y

ymin

dy1 e∆(Y −y1)ϕ2
gap(y1; ymin); (29)

see Fig. 7.
As before, we may write this in the differential form

dugap(τ ; τmin)
dτ

= 2ε

(
1
2
u2

tot − 2u gaputot + u2
gap

)
,

ugap(τmin; τmin) = 0, (30)

where utot is the solution of (20), and

ϕgap(Y ; ymin) = 2τ ugap(τ ; τmin), τmin = e∆ymin . (31)

In analogy to (27), the solution is

ugap(τ ; τmin) =
1

1 + ε(τ − 1)
− 1

1 + ε (2τ − τmin − 1)
,

(32)

or,

ϕgap(Y ; ymin)

=
2e∆Y

1 + ε (e∆Y − 1)
− 2e∆Y

1 + ε (2e∆Y − e∆ymin − 1)
. (33)

Thus, we can calculate the cross section for a fixed gap
y, that is for the diffractive production of a state of given
mass M (with the value of yM = Y − y fixed). It is deter-
mined by the derivative of the second term of (33):

dσD

dyM
≡ M2 dσD

dM2 = −g1g2
dϕgap(Y ; y)

dy

=
2g1g2∆ε e∆(2Y −yM )

[1 + ε (2e∆Y − e∆(Y −yM ) − 1)]2
(34)

≈ g1∆
2

r

2 exp(∆yM )
[2 exp(∆yM ) − 1]2

(for ε exp(∆ymin)  1). (35)

This cross section in the Schwimmer model was first ob-
tained in [21].

We see that the cross section (35) decreases with M2,
which provides convergence of the integral over the mass of
the diffractively produced system. Indeed, in the region of
large M2, that is, in the saturation domain with yM  1,
we have

M2 dσD

dM2 ∼ (M2)−∆ (36)

Thus the M2 distribution gives information on the inter-
cept of the bare pomeron, αP (0) ≡ 1 + ∆. Although (36)
was derived in the Schwimmer model, we shall see that
the same behavior is valid for its eikonal generalization.

Another way to get information on the bare intercept
is to study the inclusive spectrum. Using the AGK cutting
rules, we find that the particle rapidity distribution is

dσa

dy
= λa g1g2 e∆y ϕtot(y2), with y2 = Y − y. (37)

In a frame where hadron 1 is moving fast, (37) can be
interpreted as a Regge-like increase of partons. However,
the partonic interpretation of this result is different in a
frame where particle 2 is fast; see Sect. 4.4.

4.3 The eikonalized Schwimmer model

Suppose, now, that there are several partons in the ini-
tial state at y = 0 which split in the course of the evo-
lution. In the absence of splitting this would correspond
to the usual eikonal model (see Sect. 3). However as a re-
sult of splitting, the evolution of each initial parton cor-
responds to the Schwimmer amplitude – and the whole
amplitude is described by Fig. 8. The AGK rules for this
set of diagrams are similar to the ones for the eikonal
graphs of Fig. 1 except that each Schwimmer type am-
plitude contains, not only the inelastic discontinuity ϕinel
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Fig. 8. The eikonalized version of the Schwimmer model,
which is a generalization of Figs. 1a and 5

due to pomeron exchange, but also the discontinuity cor-
responding to gap production ϕgap(Y ; ymin), with the re-
lations ϕinel +ϕD = ϕ and ϕD = ϕgap(Y ; 0). Then, the set
of formulae for the various cross sections will be similar
to the (6), (10) and (11), together with the ones resulting
from the extra discontinuities of the amplitude:

σtot(Y ; b) = 2 [1 − exp(−g1g2ϕtot(Y )/2)] , (38)

σel(Y ; b) = (1 − exp(−g1g2ϕtot(Y )/2))2 , (39)

σinel(Y ; b) = 1 − exp(−g1g2ϕinel(Y )), (40)

σD(Y ; b) = exp(−g1g2ϕinel(Y ))
− exp(−g1g2ϕtot(Y )), (41)

σgap(Y ; ymin; b) (42)
= exp(−g1g2ϕtot(Y )) [exp(g1g2ϕgap(Y ; ymin)) − 1] ,

where ϕtot, ϕinel, ϕD and ϕgap have been defined above.
We see that the following relations hold:

σtot(b) − σel(b) = σinel(b) + σD(b)
= 1 − e−g1g2ϕtot . (43)

Note that again we have a closed expression for σinel.
The differential cross section for the diffractive produc-

tion of a state of mass M is obtained by differentiation of
(42) with respect to ymin, which enters via ϕgap. That is,

dσgap

dyM
(44)

=
dσD

Sch

dyM
exp [−g1g2(ϕtot(Y ; b) − ϕgap(Y, Y − yM ; b))] ,

where dσD
Sch/dyM = −g1g2dϕgap(Y ; y)/dy is defined by

(34). In the saturation limit (35) we obtain

dσD

dyM
≈ exp

(
−g1∆

r

)
g1∆

2

r

2 exp(∆yM )
[2 exp(∆yM ) − 1]2

, (45)

for 1 � yM � Y . Thus, again, the dependence shown in
(36) is valid at large values of M .

We note that (41), (42) and (44) differ from the results
of [21], where absorptive effects were included by multipli-
cation by the factor exp(−ϕtot). This procedure, however,
does not allow for the simultaneous diffractive cuttings
of several Schwimmer amplitudes. This difference is espe-
cially important in calculations of the survival probabil-
ity which take into account absorptive effects in inelastic

diffractive processes. For example, for the inclusive pro-
duction of particles in large-mass diffraction, the survival
probability has the form

S2(Y, yM ; b) (46)
= exp [−g1g2(ϕtot(Y ; b) − ϕgap(Y, Y − yM ; b))] .

This result can be easily obtained by using the method of
[13]. We emphasize that, in contrast to the eikonal model,
the survival probability depends not only on Y , but also
on the mass of the produced system yM .

4.4 Partonic interpretation of Schwimmer diagrams

As we discussed in Sect. 3.3, the supercritical pomeron
requires a mechanism for parton splitting. In the Schwim-
mer model this occurs through a single parton cascading
in terms of reggeon diagrams. On the other hand, in the
eikonalized Schwimmer model it is described by the inde-
pendent cascading of a Poisson set of initial fast partons.
In both models the inclusive spectrum is described by a
similar formula, (37). The increase of the spectrum with
the rapidity of the inclusive particle is due to the partonic
cascade, which leads to an exponential growth of partons
with y. Note that there is no fusion of partons in this
cascade, which would have inhibited its growth.

We stress that the model is not symmetric with re-
spect to the colliding hadrons. In the frame where hadron
2 moves fast, the parton interpretation requires both split-
ting and fusion of partons like the first and the second
terms in the RHS of (18). As a result, we first have a
growth of the number of partons and then saturation to
a constant value, due to recombination. This is the usual
interpretation used in discussions of the saturation of par-
ton densities in QCD cascade [8]. This behavior of the
parton density, in the case where hadron 2 moves fast,
can be traced to the y2 behavior of the inclusive spectrum
(37). Note, however, that only parton fusion producing
tree reggeon diagrams is allowed in this approximation.
This is justified for r � 1, g2  1, as was discussed in
Sect. 4.

Note that this dependence of the partonic interpre-
tation on the choice of the Lorentz frame is due to the
special (non-symmetric) selection of reggeon diagrams re-
lated to particular process. This is reasonable in a limited
region of the rapidity, with r exp(∆Y ) � 1. For higher
rapidities, loop diagrams become important. Of course, if
the complete set of diagrams of reggeon theory were to be
used, then the parton dynamics would be identical in all
Lorentz frames [6].

The multiplicity distribution in the Schwimmer model
is not Poisson-like [6]. There are huge fluctuations, lead-
ing, at high energies, to a large dispersion. Hence, accord-
ing to the Good–Walker formalism [22], there is a large
probability of diffractive dissociation.



K.G. Boreskov et al.: The partonic interpretation of reggeon theory models 531

5 Conclusions

We have investigated the two simplest models of reggeon
theory, using the AGK cutting rules for the supercritical
pomeron. We discussed the partonic interpretation of the
models. A closed set of equations is obtained for σtot, σinel

and σD in the Schwimmer model. It is important that
the equation for σinel is diagonal, as is the equation for
σtot. Explicit formulae for the rapidity gap production are
obtained.

We note that, from the partonic viewpoint, both the
eikonal and Schwimmer models are incomplete at asymp-
totic energies. In particular, the partonic interpretation
of the Schwimmer model depends on the choice of the
Lorentz frame. We note that, at asymptotic energies, par-
tonic dynamics must be Lorentz invariant. From the view-
point of reggeon field theory, this corresponds to the cru-
cial role of the pomeron loops.

The extension of the multi-pomeron formalism carried
out in this paper can lead to a better understanding of
high-energy dynamics and to an improvement of the anal-
ysis of data for soft high-energy interactions. This is im-
portant, for example, in the calculation of probabilities of
the rapidity gaps in diffractive processes; see, for example,
[10].
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